
Optimizing Pocket Shots in Spikeball
To Improve Athlete Performance

Cooper Cole (20815895)

Daniel Raymond (20836965)

Phillip Shahviri (20827421)

Table of Contents

Abstract 1
1. Introduction 1
2. State of the Art Review 2
3. Experimental Setup 4

3.1. Equipment Setup 4
3.2. Shot Setup 6

4. Trajectory Analysis 6
4.1. Data Collection 6
4.2. Ball Tracking 7
4.3. Data Analysis 7

5. Dynamics Modeling 9
5.1. Formulation 9
5.2. Validation 10

6. Shot Optimization 10
7. Results 11

7.1. Experimental Observations 11
7.2. Simulation Results 13
7.3. Pocket Analysis 13

8. Conclusion 15
8.1. Impact on the Sport 15
8.2. Future Improvements 15
8.3. Summary 16

9. Acknowledgements 16
References 17
Appendix 18

Appendix A: Experimental Data 18
Appendix B: Ball Tracking Code 20
Appendix C: Collision Simulation Code 28

Abstract

While the sport of Spikeball has grown significantly in recent years, little has been done to

research the dynamics of the sport. This report investigates the mechanics of “pocket shots”

where the ball rebounds off the net back towards the player who hit it. Experimental data of

real pocket shots was collected and analyzed. In performing analysis of the parameters that

go into creating a pocket shot, we provided recommendations to players on how to be more

successful in achieving pockets, as well as the required conditions for creating pocket shots

with various optimal attributes. Given that Spikeball has nearly zero research papers in

literature today, it is our hope that this research can serve as a starting point for understanding

the dynamics at play in Spikeball, while also helping to increase the skill ceiling of the game.

1. Introduction

Spikeball is dynamic, fast-paced, and relatively new in the world of sports and recreation.

Teams of two face off around a circular net placed at ankle level. See Figure 1 below of a

typical gameplay environment [1].

Figure 1: Spikeball gameplay

1

A small ball is bounced off the net during gameplay. The objective is for one team to bounce

the ball off the net such that the opposing team is unable to return it. Between bounces on the

net, teams can make up to three passes by hitting the ball with any part of their body. The ball

cannot touch the ground at any time during a team’s possession, otherwise the point is lost.

Typically when the ball impacts the net, it rebounds up into the air predictably, with the

direction of its horizontal velocity unchanged. However, on rare occasions the ball will

contact the net and rebound backwards. This is called a “pocket shot”. Figure 2 shows a

pocket shot with the trajectory of the ball marked by a red line. In the frame shown, the ball is

moving away from the net. One can see how the inbound and outbound trajectories are quite

similar.

Figure 2: Trajectory of a pocket shot

Since teams are typically on opposite sides of the net, pocket shots can be extremely difficult

to return. Our goal for this project was to develop a model of the ball-net interaction during a

pocket shot, perform optimization and analysis, and then use our findings to make

recommendations to players to help them intentionally hit more pocket shots.

2. State of the Art Review

Looking into state of the art research, we did not find any papers or technologies pertaining

directly to the sport of Spikeball. Since we are modeling a net, we explored papers that made

attempts at modeling trampolines, since the Spikeball net is essentially a trampoline.

2

We first looked at a paper out of Germany by Martin Kraft titled “A simple approximation for

the vertical spring force of the trampoline” [2]. This paper developed the equation in Figure 3

below for the vertical spring force of the trampoline.

Figure 3: Trampoline vertical spring force [2]

This model is different from others seen in literature in that it takes into account the distance

between the point of impact and the frame of the trampoline. This is relevant to pocket shots

in Spikeball because the rigid rim of the net is critical in creating the conditions necessary for

a pocket. With that being said, the major limitation of this model is that it only allows for

calculation of the vertical component of force, whereas a pocket shot involves significant

horizontal forces as well.

The second paper we looked at was “Determining and modeling the forces exerted by a

trampoline suspension system” by Helen Phillippa Jaques in the UK [3]. This paper outlined

modeling a gymnastics trampoline as a system of linear springs and point masses based on

experimental measurements, as shown in Figure 4. The paper found that vertical

force-displacement is non-linear, horizontal force-displacement is linear, and horizontal force

is dependent upon vertical displacement. This model was helpful in showing how springs can

be used to model a trampoline, but like in [2], this model only uses vertical impact forces on

the trampoline, which does not align with our needs.

3

Figure 4: Gymnastics net modeling [3]

3. Experimental Setup

3.1. Equipment Setup

Data was collected at the UW Field House using standard Spikeball equipment. We set up a

slow motion camera at a fixed distance from the net and filmed shots from both sides of the

net. The global reference frame used for our data collection and analysis is shown in Figure 5.

Figure 5: Global reference frame

Ball angles were always measured to be acute from the trajectory path to the horizontal

surface of the net. Balls coming from the left had an inbound angle of 𝜃1 and an outbound

angle of 𝜃2.

4

In real Spikeball games, the net tends to move slightly with each shot, since it is not rigidly

secured to the ground. In our experimental setup, we attached weights to the legs of the net so

that it did not move during gameplay. This greatly simplified our post processing and analysis

of the data because our net was fixed in place within the global reference frame.

Using engineering knowledge and intuition, we identified parameters that would affect the

results of our data collection. Table 1 below summarizes these parameters.

Table 1: Experimental parameter summary

Parameter Variable/Constant Value

Ball Pressure Constant 2 psi

Net Tension Constant ~327 N/m

Ball Incoming Angle Variable 26° - 57°

Ball Incoming Speed Variable 6m/s - 22 m/s

Ball pressure was determined using an air pump with an analog readout immediately before

data collection began. The pressure was measured again after data collection was complete to

ensure that the value did not change significantly.

A simple approximation of the tension on the net can be made by modeling the net as a spring

and calculated using Hooke’s law given by:

𝐹 = 𝑘𝑥
Where F is the applied force, x is the displacement of the spring, and k is the spring constant.

A 2 kg (19.62 N) mass was placed in the center of the net and the displacement was measured

to be 0.06m. Using Hooke’s law, a rough approximation for the spring constant of the net is

327 N/m. There are two reasons why this is only a rough approximation and not an exact

value. Firstly, the displacement of the net would vary depending on the area of the mass

placed on top of it. Our mass was quite small compared to the net (about 1⁄5 the radius),

however this is still far from a point mass which would be more optimal for this

measurement. Secondly, during normal gameplay the net is not guaranteed to always be

operating in its linear region where Hooke’s law is applicable.

5

3.2. Shot Setup

For the incoming ball angles, we varied the angle to create 3 categories of shots: high (~50°)

medium (~40°), and low angle (~30°). Since this parameter was human-controlled, there was

still variation between shots from the same category. The incoming ball speed was also

varied, creating 2 categories of shots: fast (~20 m/s) and slow shots (~10 m/s). Again there

was still some significant deviation in the speed of these shots due to human error. For each

shot speed, several shots were completed at each angle, creating a total of six different

categories of shots to analyze. Note that various shot categories were created simply to have a

wider range of data. The fact that there is variation within each category does not make the

collected data any less useful. The ball was still adequately tracked for almost all shots and

velocity parameters could still be used for model fitting and validation. Also note that for

every shot we were actively trying to create pocket shots. During normal gameplay pocket

shots occur quite infrequently, meaning that it would take a very long time to gather a dataset

of pocket shots with good variation. In trying to hit a pocket shot on each attempt, we were

quickly able to get a dataset with a good mix of pocket and non-pocket shots for each shot

type.

4. Trajectory Analysis

4.1. Data Collection

To collect the data, we recorded video of the three different categories of shots (high,

medium, low angles) at fast and slow shot speeds. The videos were shot at 240 fps with

consistent lighting to create the best conditions for the ball tracking software. The videos

were sorted into their 3 respective categories, then filtered into “normal”, “vertical” and

“pocket” shots, with rim shots and misses being discarded. “Normal” shots were defined as

shots that hit the net and exited predictably in the same direction, i.e. roughly equal incoming

and outgoing angles. “Vertical” shots were defined as when the ball bounced straight up into

the air, ± 5° of the Y-axis. “Pocket” shots were defined as when the ball rebounded back the

way it came.

4.2. Ball Tracking

To analyze the sorted videos for data collection, OpenCV in Python was used to read and

analyze the video frame by frame [4]. To effectively track the ball, the code applies a

6

Gaussian blur to the frame, then converts the frame to HSV colour space, and constructs a

mask for the HSV values of the tracked object; in our case the yellow Spikeball. A small

script was written to extract the upper and lower limits of the HSV values of the ball. The

mask has an “opening” image processing operation done on it to eliminate the small

undesired blobs of yellow while maintaining the ball blob size. The minimum enclosing

circle of the blob is identified using built-in OpenCV functions, then the centroid of the circle

is calculated to identify the center of the ball. See Figure 6 below. The centroid X and Y

points are then appended to an array of tracked points, frames with no tracked ball

coordinates had their coordinates interpolated. The spin of the ball is not tracked to reduce

complexity of our analysis. We focused on ball velocity, incoming and outgoing angles, and

net impact and exit locations.

Figure 6: Tracked frame and mask

4.3. Data Analysis

With the array of tracked points, the trajectory of the ball is split into two arrays: incoming

and outgoing; using the lowest Y-value to split them. These arrays can be plotted in a scatter

plot of X and Y coordinates. These points are then fit to a parabola and plotted to obtain a

smooth trajectory, and can be seen in Figure 7. The ball incoming and outgoing X and Y

velocities are calculated using the first difference on the fit data. The incoming and outgoing

angles are also calculated on the fit data.

7

Figure 7: Incoming and outgoing trajectories

The ball impact and exit locations on the net were desired to fit the model. To extract these

locations, a script was written to obtain the Y-value of the net, when the ball Y-location

exceeded this value, the previous frame was shown. In that frame, the user manually selected

the centroid of the ball and the inside edge of the rim; the impact X-distance was saved. For

the exit location, the frame prior to the ball Y-location passing back over the Y-value of the

net was shown and the user again selected the ball centroid and inside edge of the rim to save

the exit X-distance. See Figure 8.

Figure 8: Determining ball impact location

These operations were done on all recorded shots by iterating through the folders of videos,

and writing all the data to a CSV. A total of 73 data points were obtained for analysis and use

on the model. For more detail, see Appendix A for the raw data and Appendix B for the code.

8

5. Dynamics Modeling

5.1. Formulation

The net is modeled as a soft body mesh with Hookean shear and tensile forces acting between

each component. This allows the simulated net to deform under an applied load. The ball is

modeled as a rigid sphere. While the ball does deform on impact, the deformation is

negligible compared to the net. To model the rim, the top edge of circular mesh is pinned in

place, acting as a boundary condition. To simplify the model, we assume the mesh net and the

ball are the only components that are able to move. See Figure 9.

Figure 9: Simulated impact in SolidWorks vs PyBullet

Theoretically, the scenario could be modeled in two dimensions. The net follows a catenary

curve, similar to a chain between two posts [5]. However, there are a few factors that

complicate this model. The net is elastic, meaning that its length changes based on the

applied load. Secondly, analytic catenary solutions are static. They typically assume the only

force is the weight of the net itself, or at most a static general force. Solving the catenary

equation over time results in a system of partial differential equations (PDEs), dramatically

increasing complexity. Due to the limitations of numerically integrating PDEs and the

complex boundary conditions, the 3D collision library PyBullet is used instead [6]. Various

modeling techniques were employed to predict the outbound ball state, but this model proved

the most reliable. Initially, SolidWorks was used for the collision simulation, but was soon

disregarded as it could not easily be scripted to optimize pocket shots. Instead, SolidWorks

was used to generate the mesh used in the PyBullet simulation. See Appendix C for the code.

5.2. Validation

To ensure the net model reliably simulated pocket shots, the error between the simulation and

experiments was minimized. For each experiment, the inbound ball state, , was used as

9

the initial condition the model was run. Once the ball lost contact with the net, the ball state,

, was recorded. Due to experimental limitations, only the position and translational

velocity of the ball were considered.

By comparing the mean squared error of the simulation to the measured outbound ball states,

the model was given a scalar error score.

This error will vary depending on the assumed parameters of the net, such as the bending and

tensile stiffness. Thus the error can be thought of as a function of these parameters.

Then, classical optimization techniques were applied to this error function to improve the

realism of the model. Unfortunately, due to limitations in PyBullet’s softbody dynamics

engine, the spring constants cannot be changed [7]. The mass of the net had to be used as a

substitute parameter for model optimization. This reduces the generalizability of the model,

but is considered an adequate replacement as the net will deform less for a larger mass,

similar to having large spring constants.

6. Shot Optimization

There is no single optimal pocket shot; different situations call for different rebound angles

and speeds. Therefore, we have optimized multiple different objective functions. In this

analysis we defined three objective functions: fastest horizontal rebound, shortest airtime, and

shallowest rebound angle. A fast horizontal rebound is useful when the opponent is defending

against drop shots. A fast rebound will clear the ball away from the net quickly, forcing them

to reposition. Short airtime gives the least time for the opponent to react to the shot. However,

the optimal pocket drop shot will just clear the net, meaning the opponent might not have to

move much to defend it. We expect a shallow rebound angle to be a balance between the two

other objective functions. A shallow angle reduces air time, but doesn’t necessarily make the

ball land close to the net.

10

The feasible region of possible shots are constrained by the rules of the sport. First, the ball

must bounce at exactly once. This prevents the inbound ball from being positioned beyond

the rim of the net. To ensure the ball does not bounce more than once, the outbound velocity

of the ball was used to calculate its trajectory. If this path intersects with the net, the shot is

outside the feasible region. Second, the ball cannot hit the rim; this further reduces the

inbound ball position. Finally, we limited the maximum inbound speed of the ball to 45 m/s

due to limitations in the simulation.

At first, differential optimization methods were used. However, due to the highly nonlinear

simulation, the optimization failed to converge. As a result, we opted to use genetic

algorithms, which randomly sample the input space and combine promising results to narrow

its search.

7. Results

7.1. Experimental Observations

A total of 73 valid shots were analyzed across the six shot types defined previously. It is

important to remember that we as participants were actively trying to hit pocket shots on

every single shot attempt. Table 2 below shows the percentage of shots that resulted in

pockets for each shot type.

Table 2: Percentage of shots resulting in pockets for various shot types

Shot Speed

Shot Angle Fast Slow

Low 0% 17%

Medium 29% 50%

High 71% 43%

In an effort to explain the results above, it is helpful to first discuss the “pocket region”. The

pocket region is a ring just inside the rim of the net made from 2 concentric circles. An

illustration of this is shown in Figure 10 below.

11

Figure 10: Experimental pocket region (approximate)

What we observed experimentally is that balls which contact the net in this region are more

likely to be pocket shots. More discussion on this will follow in the Pocket Analysis section,

where a precise definition of the pocket region will be formulated.

From Table 2 we see that fast shots at high angles had the highest success rate by far. After

seeing this result, we hypothesized that it may be because the size of the pocket region

increases at these higher angles and faster speeds, making pockets more likely. Intuitively, it

made sense for impacts of this nature to have more margin of error in their position on the net

while still being able to create the depression near the rim required for a pocket shot.

Another observation is that at low angles, pocket shots were very difficult to achieve in

general. We believe that this is due to the size of the pocket region decreasing at lower angles.

We found that it was incredibly difficult to place the ball in the correct location and create a

pocket shot without the ball simply hitting the rim or bouncing off the net like a normal shot.

One insight seen from the data is that for medium angles, slow shots were actually preferable

to fast shots. This is the opposite of what is seen for high angles, where faster shots were the

most successful. A possible explanation for this is that when attempting medium shots, we

12

were simply more accurate when throwing the ball at slower speeds, hitting the pocket region

a larger percentage of the time.

7.2. Simulation Results

After optimizing for the various objective functions, the following shots were found, as seen

in Table 3.

Table 3: Optimal Pocket Shots

Criterion Shot Parameters Optimum

cm from rim m/s right m/s down

Fastest Horizontal Rebound 11.9 14.90 39.19 22 m/s left

Shallowest Rebound Angle 11.7 14.38 39.53 48°

Shortest Airtime 18.35 0.11 11.4 0.935 seconds

The fastest horizontal rebound and the shallowest rebound angle are remarkably similar, both

requiring a fast shot around 60 degrees. This similarity is expected, since a shallow rebound

will result in more kinetic energy horizontally. The optimal drop shot is almost entirely

vertical; this imparts the least energy into the ball while still clearing the net. While we

expect this type of shot results in the shortest airtime, uncertainty remains. The optimal

duration discovered is quite long for drop shots, leading us to believe that the optimum has

not yet been reached. Further investigation is required to determine the optimal pocket drop

shot.

7.3. Pocket Analysis

Mathematically, the pocket region is defined as the set of points on the net the ball can initiate

contact with that result in a pocket shot. As the model is radially symmetric, this can be

viewed as a set of scalars, denoting a radial distance from the center of the net. Further, the

assumption is made that this set is connected; if two radii result in a pocket, then all radii

between will as well. Thus, the “pocket size” is the distance between the smallest and largest

radius (see Figure 10).

From our experiments, we determined that the pocket size is dependent on the inbound shot

velocity. Using the net model, we swept through all possible inbound shot parameters and

13

identified which shots result in pockets. By varying the impact position for each inbound

velocity, the size of the pocket region can be measured. Figure 11 is the result of over 10

thousand simulated shots.

Figure 11: Pocket Size (m) vs Inbound Shot Speed & Angle

This heat map shows the types of shots that can lead to a pocket. The darker the region, the

larger the pocket size. Notably, there are two predominant distributions. High angle shots

near 90 degrees result in pockets at most speeds. This is reasonable, as there is not much

horizontal kinetic energy to overcome. Since the ball must have sufficient energy to clear the

net, there is a minimum inbound speed of ~9 m/s. Lower angle shots, around 65 degrees,

require higher speeds in order to cause a pocket. This is reasonable as well, since the ball

must bury into the net for it to sufficiently deform. This is a more traditional pocket that is

more commonly seen in game; there is less use for a player to hit the ball directly downwards

while over the net, as the opponent is already anticipating a change in direction. For

traditional pocket shots, the ball must be at a minimum of ~15 m/s and ~45 degrees. Based on

the overall distribution, we found a shot of 23.3 m/s at a 65 degree angle had the largest

pocket region, at nearly ⅓ of the net diameter.

Interestingly, shots around 80 degrees seem to have a much smaller pocket region. Likely,

this is because there is not enough horizontal energy to create a pocket, but too much to be

easily overcome by the natural slope of the net. However, this could be due to simulation

error; we did not perform any shots at these high angles to validate this claim. These results

14

do not perfectly line up with experiments, where numerous shots around 12 m/s and 50

degrees resulted in pocket shots. This suggests that the simulated net was more stiff than

desired. However, we believe the distribution of pocket region sizes to be accurate.

8. Conclusion

8.1. Impact on the Sport

The results of this study have both practical implications and suggestions for athletes. The

model that has been developed can be used for simulating different shots, doing “what-if”

analysis to observe the outcomes of unique combinations of velocity, angle, and impact

locations. Additionally, the model can be used for net design by tuning the net parameters to

test different tensions and dimensions. For athletes, especially beginners, it is most important

to understand that the pocket region increases for either increase in incoming angle, or

incoming velocity. Hitting high angle, high velocity shots to increase your chances of hitting

a pocket shot. Furthermore, avoid trying to hit a pocket shot at lower incoming angles, as it

requires greater accuracy to hit the smaller pocket region. At the minimum required velocity

for a pocket shot, this region becomes very difficult to hit, and is not worth the risk of

missing the net or hitting the rim.

8.2. Future Improvements

Many improvements can be made to improve the simulation. First, the physics framework

PyBullet should be replaced. Softbody mechanics aren’t fully developed within the library,

leading to occasional glitches between the ball and the mesh. This resulted in some simulated

shots being incorrectly labeled as a pocket. Second, in future experiments we hope to collect

information about the ball spin by using a camera with a higher framerate. This will allow us

to fit the model to the experiments more accurately, as spin can cause large differences in the

outbound ball state. Finally, we hope to implement our analysis in three dimensions. This will

allow us to consider a wide variety of shots. “Side pockets”, which cause the ball to veer left

or right, are a large part of the sport which has not been thoroughly analyzed.

15

8.3. Summary

Overall, this study on Spikeball's pocket shots provides significant insights into the dynamics

of the game and practical strategies for players. Future enhancements to the simulation and

experimental setup could further refine these findings and expand the understanding of

pocket shots in various playing conditions. We hope that this research serves as a starting

point for understanding the dynamics at play in Spikeball.

9. Acknowledgements

We would like to acknowledge the contributions of Professor John McPhee. We are grateful

for his insights and expertise which helped direct us in the early stages of this project. We

would also like to thank the staff at Columbia Ice Field for allowing us to collect data in their

facility and lending us a Spikeball net.

16

References

[1] “Spikeball,” spikeball.com. Available: https://spikeball.com/pages/about-us-spikeball.

Accessed: Dec. 14, 2023.

[2] M. Kraft, "A simple approximation for the vertical spring force of the trampoline," Jul.

2001.[Online].Available:https://leopard.tu-braunschweig.de/servlets/MCRFileNodeServlet/db

bs_derivate_00001214/Document.pdf

[3] H. P. Jaques, "Determining and modeling the forces exerted by a trampoline suspension

system," 2008. [Online] Available:

https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=jacques+2008+trampo

line&btnG=

[4] A. Rosebrock, "Ball Tracking with OpenCV," September 14, 2015. [Online]. Available:

https://pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/. Accessed: Nov. 1, 2023.

[5] E. J. Routh, "On Strings," in A Treatise on Analytical Statics, Cambridge, UK: University

Press, 1891, pp. 364–374. [Online]. Available:

https://books.google.ca/books?id=3N5JAAAAMAAJ&pg=PA315&redir_esc=y#v=onepage

&q&f=false. Accessed: Nov 1, 2023.

[6] PyBullet. [Online]. Available: https://pybullet.org/wordpress/. Accessed: Nov. 15, 2023

[7] Bullet Physics, Bullet 3 Issues. [Online]. Available:

https://github.com/bulletphysics/bullet3/issues/2388. Accessed: Nov. 20, 2023.

17

Appendix

Appendix A: Experimental Data

Table A.1: Experimental Ball Trajectory Data

vx_in vy_in vx_out vy_out x_in x_out type_in type_out

-7.54 8.49 -1.42 -6.87 -24.38 -11.52 high normal

13.15 16.73 0.32 -11.96 23.04 15.77 high normal

-15.84 16.20 -1.90 -6.25 -24.61 -11.63 high normal

-8.09 9.05 -3.23 -8.35 -25.17 -13.42 high normal

-14.77 17.00 -1.46 -4.56 -23.83 -10.85 high normal

-8.75 10.62 -2.90 -9.62 -21.36 -10.51 high normal

-6.42 8.65 -1.29 -8.49 -22.71 -11.86 high normal

-7.52 9.41 -1.12 -7.17 -20.47 -9.62 high normal

11.54 13.78 -1.40 -7.05 13.20 8.39 high pocket

7.40 9.43 -5.96 -6.08 6.71 10.63 high pocket

-7.20 8.79 1.85 -8.61 -8.84 high pocket

10.21 11.24 -1.72 -6.40 high pocket

13.96 18.05 -1.10 -5.70 12.64 11.63 high pocket

7.25 9.27 -1.98 -8.93 12.86 10.96 high pocket

13.69 15.96 -2.40 -4.27 5.26 8.05 high pocket

13.42 16.93 -0.97 -6.27 13.76 13.42 high pocket

11.71 14.16 -2.99 -7.40 6.94 8.95 high pocket

12.08 15.20 -1.95 -4.19 6.94 9.73 high pocket

12.89 15.94 -0.89 -4.39 11.97 10.07 high pocket

8.76 11.42 -3.17 -8.73 8.50 9.17 high pocket

11.28 15.12 -1.39 -4.26 8.84 10.63 high pocket

-7.83 9.36 2.06 -9.01 -10.51 -8.50 high pocket

7.55 10.48 -2.82 -5.03 9.62 11.19 high pocket

-12.44 12.61 0.25 -18.26 -13.65 -8.39 high vertical

13.69 16.87 0.23 -6.74 19.24 14.43 high vertical

-13.96 14.53 0.44 -4.91 -16.00 -7.83 high vertical

13.69 15.97 -0.45 -5.91 14.54 10.74 high vertical

-12.89 15.38 -0.60 -4.10 -18.90 -12.98 high vertical

12.62 13.78 -0.48 -5.42 14.77 10.63 high vertical

-7.52 9.49 -0.65 -16.51 -20.25 -9.73 high vertical

6.44 10.02 0.39 -4.47 26.17 20.02 high vertical

13.15 16.61 -0.08 -6.66 17.79 12.53 high vertical

-6.71 8.26 -0.33 -7.03 -19.24 -10.51 high vertical

11.54 14.96 -0.92 -7.11 15.88 12.75 high vertical

11.54 14.96 -0.92 -7.11 high vertical

-6.98 5.70 -1.30 -5.63 -17.90 -6.82 medium normal

18

-6.39 5.44 -1.17 -3.21 -23.04 -11.41 medium normal

-11.85 10.57 -1.36 -3.44 -17.79 -8.84 medium normal

-6.23 6.15 -2.40 -5.58 -22.71 -10.85 medium normal

-15.12 14.10 -1.33 -5.75 -19.69 -9.96 medium normal

-15.03 14.42 -4.23 -8.34 -28.19 -11.97 medium normal

7.31 7.13 1.87 -8.57 23.83 15.44 medium normal

-16.11 13.23 -1.32 -5.78 -19.46 -8.72 medium normal

-9.30 8.97 -1.61 -9.08 -21.03 -9.73 medium normal

7.55 7.80 2.63 -7.54 22.93 14.77 medium normal

8.87 8.14 0.11 -5.79 16.33 9.84 medium normal

-8.73 7.79 1.13 -8.15 -7.94 -5.37 medium pocket

9.81 9.93 -1.19 -4.39 10.29 7.38 medium pocket

7.61 8.79 -1.75 -2.52 5.82 8.28 medium pocket

15.46 12.57 -0.99 -5.60 11.30 7.72 medium pocket

-8.13 7.27 2.54 -5.78 -12.30 -10.74 medium pocket

8.55 7.26 -1.37 -7.56 10.74 7.38 medium pocket

7.75 7.46 -3.01 -5.99 11.07 11.41 medium pocket

9.52 8.06 -2.49 -6.55 9.06 6.71 medium pocket

16.38 15.71 -2.54 -5.02 medium pocket

-7.38 6.14 -0.26 -8.94 -16.55 -9.40 medium vertical

9.53 9.83 -0.12 3.08 13.98 7.83 medium vertical

6.31 7.45 -0.11 3.36 14.43 10.07 medium vertical

9.37 10.31 -0.29 -9.25 16.67 9.51 medium vertical

4.77 5.94 -0.71 -8.53 12.53 8.05 medium vertical

5.06 6.19 0.11 7.33 15.21 9.17 medium vertical

9.88 9.74 1.28 -8.37 15.44 10.40 medium vertical

8.45 8.86 1.13 -8.68 17.45 8.72 medium vertical

-13.16 11.36 -0.59 -6.64 -18.34 -7.83 medium vertical

-8.41 7.51 -0.37 -3.58 -15.44 -7.94 medium vertical

8.67 7.43 0.56 -7.77 14.77 8.84 medium vertical

4.79 3.63 0.73 -4.00 10.74 6.26 low normal

9.48 7.09 1.04 -5.11 15.88 7.72 low normal

-10.39 7.16 -2.62 -3.36 -27.29 -10.51 low normal

-16.91 10.03 -6.91 -3.33 low normal

7.73 4.00 4.42 -3.64 low normal

-8.96 5.09 -7.23 -5.47 -40.27 -14.65 low normal

14.25 7.23 3.63 -3.21 low normal

-15.70 8.51 -3.87 -3.64 -32.44 -6.04 low normal

16.65 8.60 2.90 -3.75 low normal

-9.98 5.98 -7.88 -4.92 -48.43 -21.81 low normal

9.14 5.05 4.66 -9.23 19.69 7.05 low normal

19

-14.70 9.36 -3.28 -2.78 -32.33 -10.96 low normal

14.47 7.55 3.88 -6.85 18.46 5.93 low normal

-16.82 9.96 -4.91 -6.68 -26.62 -7.83 low normal

-8.28 5.69 0.91 -3.57 -10.63 -6.38 low pocket

5.05 3.61 0.13 -1.69 low vertical

Appendix B: Ball Tracking Code

import numpy as np

import pandas as pd

import cv2

import imutils

import time

import csv

import matplotlib.pyplot as plt

import os

from scipy.optimize import curve_fit

root_video_folder = 'project_videos'

Initialize empty lists to store video files for each category

high_videos = {'Normal':[], 'Pocket':[], 'Vertical':[]}

medium_videos = {'Normal':[], 'Pocket':[], 'Vertical':[]}

low_videos = {'Normal':[], 'Pocket':[], 'Vertical':[]}

list of tracked points

tracked_pts = []

CROPPED_NET_Y_COORD = 350 # The y pixel coordinate of the cropped frame

ORIGINAL_NET_Y_COORD = 580

PIXELS_PER_METER = 894 # Points (546, 591) and (1291, 582) were selected on original image. x-diff is 745px

/ 3 ft => 894px / 1 m

RESIZED_IMG_PIXELS_PER_METER = 255.84 # Points (170, 185) and (404, 181) were selected on resized image.

x-diff is 234px / 3 ft => 255.84px / 1 m

MAX_START_Y_COORD = 100 # If the y values are higher than this at the start of the tracked points then

discard them

SHOW_PLOTS = False

PRINT_DATA = True

WRITE_DATA_TO_CSV = True

BALL_RADIUS_M = 0.04445

BALL_RADIUS_PX = BALL_RADIUS_M*PIXELS_PER_METER

START_Y_CROP = 230

END_Y_CROP = 686

START_X_CROP = 432

END_X_CROP = 1432

Min HSV value in ROI: [20 42 91]

Max HSV value in ROI: [30 255 248]

define the lower and upper boundaries of the "yellow" ball in the HSV color space

yellowLower = (20, 80, 100)

yellowUpper = (30, 255, 248)

TEST VALUES

yellowLower = (20, 125, 100)

20

yellowUpper = (30, 255, 248)

Min HSV value in ROI: [21 214 202]

Max HSV value in ROI: [25 255 245]

def get_video_files():

Iterate through the master folder

for root, dirs, files in os.walk(root_video_folder):

Split the path into components

path_components = root.split(os.path.sep)

Check if the path has enough components to identify category and subcategory

if len(path_components) >= 3:

_, category, subcategory = path_components[-3:]

Check if the current directory is a video subfolder

if subcategory in ['Normal', 'Pocket', 'Vertical']:

Iterate through the files in the current subfolder

for file in files:

Check if the file is a video file (you may need to adjust this condition)

if file.endswith(('.mp4', '.avi', '.MOV')):

Create the full path to the video file

video_path = os.path.join(root, file)

Append the video file to the appropriate list based on the category

if category == 'high':

high_videos[subcategory].append(video_path)

elif category == 'medium':

medium_videos[subcategory].append(video_path)

elif category == 'low':

low_videos[subcategory].append(video_path)

print("Videos in 'high':", high_videos)

print("Videos in 'medium':", medium_videos)

print("Videos in 'low':", low_videos)

def get_ball_hsv(frame):

Select ROI

roi = cv2.selectROI(frame)

Crop image

roi_cropped = frame[int(roi[1]):int(roi[1]+roi[3]), int(roi[0]):int(roi[0]+roi[2])]

Convert to HSV

hsv_roi = cv2.cvtColor(roi_cropped, cv2.COLOR_BGR2HSV)

Calculate average HSV values

average_color_per_row = np.average(hsv_roi, axis=0)

average_color = np.average(average_color_per_row, axis=0)

Calculate min and max HSV values

min_color = np.min(hsv_roi, axis=(0, 1))

max_color = np.max(hsv_roi, axis=(0, 1))

cv2.waitKey(0)

cv2.destroyAllWindows()

return min_color, max_color

Track the ball

def track_ball(video, tracked_points, mask_lower, mask_upper, show_video=True):

while True:

grab the current frame

frame = video.read()

handle the frame from VideoCapture or VideoStream

frame = frame[1] if video else frame

21

if we are viewing a video and we did not grab a frame,

then we have reached the end of the video

if frame is None:

break

crop the frame, blur it, and convert it to the HSV

color space

frame = frame[START_Y_CROP:END_Y_CROP, START_X_CROP:END_X_CROP]

blurred = cv2.GaussianBlur(frame, (11, 11), 0)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

construct a mask for the color "yellow", then perform

a series of dilations and erosions to remove any small

blobs left in the mask

mask = cv2.inRange(hsv, mask_lower, mask_upper)

mask = cv2.erode(mask, None, iterations=10)

mask = cv2.dilate(mask, None, iterations=7)

cv2.imshow("mask", mask)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

center = None

only proceed if at least one contour was found

if len(cnts) > 0:

find the largest contour in the mask, then use

it to compute the minimum enclosing circle and

centroid

c = max(cnts, key=cv2.contourArea)

((t, y), radius) = cv2.minEnclosingCircle(c)

M = cv2.moments(c)

center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))

only proceed if the radius meets a minimum size

if radius > 20:

draw the circle and centroid on the frame,

then update the list of tracked points

cv2.circle(frame, (int(t), int(y)), int(radius),

(0, 255, 255), 2)

cv2.circle(frame, center, 5, (0, 0, 255), -1)

update the points queue

tracked_points.append(center)

loop over the set of tracked points

for i in range(1, len(tracked_points)):

if either of the tracked points are None, ignore them

if tracked_points[i - 1] is None or tracked_points[i] is None:

continue

otherwise, compute the thickness of the line and

draw the connecting lines

thickness = int(np.sqrt(512 / float(i + 1)) * 2.5)

cv2.line(frame, tracked_points[i - 1], tracked_points[i], (0, 0, 255), thickness)

if show_video:

show the frame to our screen

cv2.imshow("Frame", frame)

key = cv2.waitKey(1) & 0xFF

if key == ord("q"):

break

return tracked_points

22

Plot the trajectory

def interpolate_nones(A: np.ndarray):

ok = ~np.isnan(A)

xp = ok.ravel().nonzero()[0]

fp = A[~np.isnan(A)]

x = np.isnan(A).ravel().nonzero()[0]

A[np.isnan(A)] = np.interp(x, xp, fp)

return A

def plot_trajectory(x1, y1, x2, y2, title1, title2):

if x2 is None or y2 is None:

plt.figure()

plt.plot(x1, y1, label=title1)

plt.gca().invert_yaxis()

plt.xlabel('x-coordinate (pixels)')

plt.ylabel('y-coordinate (pixels)')

plt.legend()

plt.show()

else:

plt.figure()

plt.plot(x1, y1, label=title1)

plt.plot(x2, y2, label=title2)

plt.gca().invert_yaxis()

plt.xlabel('x-coordinate (pixels)')

plt.ylabel('y-coordinate (pixels)')

plt.legend()

plt.show()

def fit_line(x, y, order=1):

coeffs = np.polyfit(x, y, order)

fitted = np.polyval(coeffs, x)

return fitted

def fit_parabola(x, y, order=2):

coeffs = np.polyfit(x, y, order)

fitted = np.polyval(coeffs, x)

return fitted

def get_angle(x, y):

Calculate the slope of the line between the first and last points

slope = (y[-1] - y[0]) / (x[-1] - x[0])

Calculate the angle in degrees

angle = np.arctan(slope) * 180 / np.pi

return angle

def plot_speeds(x, y, title1, title2):

plt.figure()

plt.subplot(2, 1, 1)

plt.plot(x)

plt.xlabel('Frame')

plt.ylabel('Speed (m/s)')

plt.title(title1)

plt.subplot(2, 1, 2)

plt.plot(y)

plt.xlabel('Frame')

plt.ylabel('Speed (m/s)')

plt.title(title2)

plt.tight_layout()

plt.show()

23

def fit_curve(velocity_x, velocity_y, order):

cubic fit

coeffs_vx = np.polyfit(np.linspace(0, len(velocity_x), len(velocity_x)), velocity_x, order)

coeffs_vy = np.polyfit(np.linspace(0, len(velocity_y), len(velocity_y)), velocity_y, order)

Calculate the fitted speeds

fitted_vx = np.polyval(coeffs_vx, np.linspace(0, len(velocity_x), len(velocity_x)))

fitted_vy = np.polyval(coeffs_vy, np.linspace(0, len(velocity_y), len(velocity_y)))

return fitted_vx, fitted_vy

Mouse callback function

def click_event(event, x, y, flags, params, click_coordinates, frame):

If the left mouse button was clicked, record the (x, y) coordinates

if event == cv2.EVENT_LBUTTONDOWN:

click_coordinates.append((x, y))

Draw a circle where the user clicked

cv2.circle(frame, (x, y), 5, (0, 255, 0), -1)

If two points have been clicked, draw a line between them

if len(click_coordinates) == 2:

cv2.line(frame, click_coordinates[0], click_coordinates[1], (0, 255, 0), 2)

Display the image

cv2.imshow('image', frame)

Calculate the distance between two points

def get_ball_distance_to_edge(frame, return_type='x'):

Display the image and set the mouse callback function

points = []

cv2.imshow('image', frame)

cv2.setMouseCallback('image', lambda *args: click_event(*args, click_coordinates=points, frame=frame))

Wait for a key press and then close the windows

cv2.waitKey(0)

cv2.destroyAllWindows()

If two points were clicked, calculate and print the distance between them

if len(points) == 2:

distance_to_edge = np.sqrt((points[1][0] - points[0][0])**2 + (points[1][1] - points[0][1])**2)

x_distance = points[1][0] - points[0][0]

y_distance = points[1][1] - points[0][1]

if return_type == 'x':

return x_distance

elif return_type == 'y':

return y_distance

else:

return distance_to_edge

else:

return -1

def pad_arrays(arrays):

Find the maximum length among the arrays

max_length = max(len(arr) for arr in arrays)

Pad each array with -1s to match the maximum length

padded_arrays = [np.pad(arr, (0, max_length - len(arr)), constant_values=-1) for arr in arrays]

return padded_arrays

def get_distance_in_frame(cap, frame_index):

24

Skip to the frame at max_index

try:

cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)

except Exception as e:

print(f"Error setting frame index: {e}")

Read the frame at max_index

ret, frame = cap.read()

Initialize the list of points

ball_x_distance = np.round(get_ball_distance_to_edge(frame) / PIXELS_PER_METER * 100, 2)

return ball_x_distance

def truncate_array_to_monotonic(arr, increment=1):

result = [arr[0]] # Initialize the result array with the first element

for i in range(1, len(arr)):

if arr[i] == result[-1] + increment:

result.append(arr[i])

elif arr[i] > result[-1] + increment:

break # Stop if the next value is greater than the expected increment

return result

def trim_nones_from_tuples(array):

non_none_indices = [i for i, value in enumerate(array) if (isinstance(value, tuple) and None not in

value) or value is not None]

if not non_none_indices:

return [] # Handle case where all elements are None or tuples with None

start_index = non_none_indices[0]

while (array[start_index] is not None and array[start_index][1] > MAX_START_Y_COORD):

start_index += 1

end_index = non_none_indices[-1] + 1

return array[start_index:end_index]

get_video_files()

video_files = {'high_videos': high_videos, 'medium_videos': medium_videos, 'low_videos': low_videos}

for video_type_name, video_type in video_files.items():

for shot_type, videos in video_type.items():

for video in videos:

video capture object

cap = cv2.VideoCapture(video)

allow the camera or video file to warm up

time.sleep(2.0)

Get the frame rate

frame_rate = cap.get(cv2.CAP_PROP_FPS)

print(f'Frame rate: {frame_rate} fps')

tracked_pts = track_ball(cap, tracked_pts, yellowLower, yellowUpper)

print tracked_pts

if PRINT_DATA:

print(f'tracked_pts: {tracked_pts}')

25

cap.release()

cv2.destroyAllWindows()

print number of not None elements in tracked_pts

print(f"Number of tracked points: {len([pt for pt in tracked_pts if pt is not None])}")

trimmed_tracked_pts = trim_nones_from_tuples(tracked_pts)

x_coords = interpolate_nones(np.array([pt[0] if pt is not None else np.nan for pt in

tracked_pts]))

y_coords = interpolate_nones(np.array([pt[1] if pt is not None else np.nan for pt in

tracked_pts]))

print x_coords and y_coords

if PRINT_DATA:

print(f'x_coords: {x_coords}')

print(f'y_coords: {y_coords}')

Find the indicies of frames where the ball is in contact with the net

impact_indicies = (np.argwhere(y_coords > CROPPED_NET_Y_COORD - BALL_RADIUS_PX))

impact_indicies = impact_indicies.flatten()

Truncate to remove indicies where the ball was not found in frame

impact_indicies = truncate_array_to_monotonic(impact_indicies, increment=1)

impact_start_index = impact_indicies[0]

print(f"Impact_start_index: {impact_start_index}")

impact_end_index = impact_indicies[-1]

print(f"Impact_end_index: {impact_end_index}")

Split x_coords and y_coords into incoming and outgoing arrays

incoming_x = x_coords[:impact_start_index]

incoming_y = y_coords[:impact_start_index]

outgoing_x = x_coords[impact_end_index:]

outgoing_y = y_coords[impact_end_index:]

print incoming_x, incoming_y, outgoing_x, and outgoing_y

if PRINT_DATA:

print(f'incoming_x: {incoming_x}')

print(f'incoming_y: {incoming_y}')

print(f'outgoing_x: {outgoing_x}')

print(f'outgoing_y: {outgoing_y}')

fitted_incoming_y = fit_parabola(incoming_x, incoming_y)

fitted_outgoing_y = fit_parabola(outgoing_x, outgoing_y)

print fitted_incoming_y and fitted_outgoing_y

if PRINT_DATA:

print(f'fitted_incoming_y: {fitted_incoming_y}')

print(f'fitted_outgoing_y: {fitted_outgoing_y}')

incoming_angle = np.abs(np.round(get_angle(incoming_x, fitted_incoming_y), 2))

outgoing_angle = np.abs(np.round(get_angle(outgoing_x, fitted_outgoing_y), 2))

if PRINT_DATA:

print(f"angle of incoming trajectory: {incoming_angle} degrees")

print(f"angle of outgoing trajectory: {outgoing_angle} degrees")

calculate Velocities

incoming_vx = np.trim_zeros(np.diff(incoming_x) * frame_rate / PIXELS_PER_METER)

26

incoming_vy = np.trim_zeros(np.diff(fitted_incoming_y) * frame_rate / PIXELS_PER_METER)

outgoing_vx = np.trim_zeros(np.diff(outgoing_x) * frame_rate / PIXELS_PER_METER)

outgoing_vy = np.trim_zeros(np.diff(fitted_outgoing_y) * frame_rate / PIXELS_PER_METER)

print incoming_vx, incoming_vy, outgoing_vx, and outgoing_vy

if PRINT_DATA:

print(f'incoming_vx: {incoming_vx}')

print(f'incoming_vy: {incoming_vy}')

print(f'outgoing_vx: {outgoing_vx}')

print(f'outgoing_vy: {outgoing_vy}')

fitted_incoming_vx, fitted_incoming_vy = fit_curve(incoming_vx, incoming_vy, 5)

fitted_outgoing_vx, fitted_outgoing_vy = fit_curve(outgoing_vx, outgoing_vy, 3)

print fitted_incoming_vx, fitted_incoming_vy, fitted_outgoing_vx, and fitted_outgoing_vy

if PRINT_DATA:

print(f'fitted_incoming_vx: {fitted_incoming_vx}')

print(f'fitted_incoming_vy: {fitted_incoming_vy}')

print(f'fitted_outgoing_vx: {fitted_outgoing_vx}')

print(f'fitted_outgoing_vy: {fitted_outgoing_vy}')

median_incoming_vx = np.median(fitted_incoming_vx[-5:])

median_incoming_vy = np.median(fitted_incoming_vy[-5:])

median_outgoing_vx = np.median(fitted_outgoing_vx[:5])

median_outgoing_vy = np.median(fitted_outgoing_vy[:5])

Release and reopen the video file before getting the distance from ball center to rim edge

cap.release()

cap = cv2.VideoCapture(video)

inbound_x_distance = get_distance_in_frame(cap, impact_start_index)

print(f"Distance from ball to edge on impact: {inbound_x_distance} centimeters")

cap.release()

cap = cv2.VideoCapture(video)

outbound_x_distance = get_distance_in_frame(cap, impact_end_index)

print(f"Distance from ball to edge on exit: {outbound_x_distance} centimeters")

cap.release()

print the fitted speeds

if PRINT_DATA:

print(f'Incoming fitted speed in x: {np.round(fitted_incoming_vx, 2)} m/s')

if SHOW_PLOTS:

plot the trajectory

plot_trajectory(x_coords, y_coords, None, None, 'Ball trajectory', None)

plot the incoming and outoging trajectories

plot_trajectory(incoming_x, incoming_y, outgoing_x, outgoing_y, 'Incoming trajectory',

'Outgoing trajectory')

plot the incoming and outgoing fitted trajectories

plot_trajectory(incoming_x, fitted_incoming_y, outgoing_x, fitted_outgoing_y, 'Incoming

fit', 'Outgoing fit')

Plot the speeds in x and y as separate sub plots

plot_speeds(incoming_vx, incoming_vy, 'Incoming speed in x', 'Incoming speed in y')

plot_speeds(outgoing_vx, outgoing_vy, 'Outgoing speed in x', 'Outgoing speed in y')

Plot the fitted speeds in x and y as separate sub plots

plot_speeds(fitted_incoming_vx, fitted_incoming_vy, 'Incoming fitted speed in x', 'Incoming

fitted speed in y')

plot_speeds(fitted_outgoing_vx, fitted_outgoing_vy, 'Outgoing fitted speed in x', 'Outgoing

27

fitted speed in y')

if WRITE_DATA_TO_CSV:

#data_arrays = [median_incoming_vx, median_incoming_vy, median_outgoing_vx,

median_outgoing_vy, [inbound_x_distance], [outbound_x_distance], [incoming_angle], [outgoing_angle]]

#padded_arrays = pad_arrays(data_arrays)

Assuming fitted_incoming_vx, fitted_incoming_vy, ball_x_distance, incoming_angle, and

outgoing_angle are defined

ball_data = {

'median_incoming_vx': padded_arrays[0],

'median_incoming_vy': padded_arrays[1],

"median_outgoing_vx": padded_arrays[2],

"median_outgoing_vy": padded_arrays[3],

'inbound_x_distance': padded_arrays[4],

'outbound_x_distance': padded_arrays[5],

'incoming_angle': padded_arrays[6],

'outgoing_angle': padded_arrays[7]

}

ball_data = {

'median_incoming_vx': [median_incoming_vx],

'median_incoming_vy': [median_incoming_vy],

"median_outgoing_vx": [median_outgoing_vx],

"median_outgoing_vy": [median_outgoing_vy],

'inbound_x_distance': [inbound_x_distance],

'outbound_x_distance': [outbound_x_distance],

'incoming_angle': [incoming_angle],

'outgoing_angle': [outgoing_angle]

}

#print("Hello {} {}, hope you're well!".format(first_name,last_name))

Create a DataFrame from the data

video_name_df = pd.DataFrame({"{} {}".format(video_type_name, shot_type): [video]})

ball_data_df = pd.DataFrame(ball_data)

empty_df = pd.DataFrame(columns=range(8))

Write the DataFrame to a CSV file

video_name_df.to_csv(video_type_name + '.csv', index=False, mode='a')

ball_data_df.to_csv(video_type_name + '.csv', index=False, mode='a')

empty_df.loc[0] = [None] * 8

empty_df.to_csv(video_type_name + '.csv', mode='a', header=False, index=False)

empty_df.to_csv(video_type_name + '.csv', mode='a', header=False, index=False)

empty_df.to_csv(video_type_name + '.csv', mode='a', header=False, index=False)

tracked_pts = []

Appendix C: Collision Simulation Code

Figure C.1: Simulation Environment

import numpy as np

import pybullet as p

from functools import cache

from PIL import Image

from time import sleep

np.seterr(invalid='raise')

28

NET_RADIUS = 0.42 # m

BALL_RADIUS = 0.04445 # m

NET_MODEL = "net.obj"

NET_EDGE_NODES = 520

GRAVITY = 9.81 # m/s^2

NET_NODES = 5720

class SpikeBallSimulator:

def __init__(self, *net_params, max_duration=0.1, g=GRAVITY, plot=False, trimetric=False, **net_kwargs)

-> None:

self.step_rate = 20000

self.max_steps = int(max_duration*self.step_rate)

self.plot = plot

p.connect(p.GUI if plot else p.DIRECT)

p.setTimeStep(1/self.step_rate)

Camera settings

cameraTargetPosition = [0, 0, 0] # x, y, z

cameraDistance = 0.56

cameraYaw = 0

cameraPitch = -30 if trimetric else 0

p.resetDebugVisualizerCamera(cameraDistance, cameraYaw, cameraPitch, cameraTargetPosition)

p.setGravity(0, 0, -g)

Net model

self.contact_margin = 0.01

Ball model

self.ball = p.createMultiBody(

baseMass=0.150, # kg

baseCollisionShapeIndex=p.createCollisionShape(p.GEOM_SPHERE, radius=BALL_RADIUS),

basePosition=[0, 0, BALL_RADIUS],

baseOrientation=p.getQuaternionFromEuler([0, 0, 0]),

)

self.net = None

self.init_state = None

self.update_net(*net_params, **net_kwargs)

self.init_state = p.saveState()

def update_net(self, mass=0.1, scale=1):

if self.init_state is not None:

p.restoreState(self.init_state)

if self.net is not None:

raise NotImplementedError("Updating net parameters is not yet implemented")

p.removeBody(self.net)

self.net = p.loadSoftBody(

NET_MODEL,

basePosition=[-0.5, 0.5, 0], # Center of the net is not at the origin

baseOrientation=p.getQuaternionFromEuler([np.pi/2, 0, 0]),

scale=0.0005*scale, # Model has a diameter of 1828.8 mm

mass=mass,

useSelfCollision=1,

collisionMargin=self.contact_margin,

)

Fix rim

for nodeIndex in range(NET_EDGE_NODES):

p.createSoftBodyAnchor(self.net, nodeIndex, -1, -1) # Anchor to a fixed point in space

self.init_state = p.saveState()

def run(self, rim_contact_dist, vx, vy, min_steps=4, save=None, demo=False):

p.restoreState(self.init_state)

contact_height = BALL_RADIUS + self.contact_margin/2

Start ball from higher up if it's a demo, but so that it contacts the net at the same point

if demo:

p.setGravity(0, 0, 0)

29

contact_height += vy/70

rim_contact_dist += vx/70

p.resetBasePositionAndOrientation(self.ball, [NET_RADIUS - rim_contact_dist, 0, contact_height], [0,

0, 0, 1])

p.resetBaseVelocity(self.ball, linearVelocity=[vx, 0, -vy], angularVelocity=[0, 0, 0])

ball_coords = []

frames = []

sim_started = False

step_count = 0

if self.plot:

p.setRealTimeSimulation(True)

while p.isConnected():

if self.plot:

sleep(0.01) # Time in seconds.

else:

p.stepSimulation()

if save is not None:

width, height, rgbImg, depthImg, segImg = p.getCameraImage(720, 480,

renderer=p.ER_BULLET_HARDWARE_OPENGL)

rgb = np.array(rgbImg, dtype=np.uint8)

rgb = np.reshape(rgb, (height, width, 4))[:, :, :3]

Crop height and width to remove bottom and right third

rgb = rgb[:height*5//6, :width*4//5]

frames.append(Image.fromarray(rgb, 'RGB'))

step_count += 1

Get ball position

(x, y, z), _ = p.getBasePositionAndOrientation(self.ball)

ball_coords.append((x, y, z))

if not sim_started and z < contact_height:

sim_started = True

elif not demo and sim_started and z > contact_height and step_count > min_steps:

break

elif np.linalg.norm([x, y]) > NET_RADIUS + BALL_RADIUS and not demo:

break

elif step_count > self.max_steps:

if not sim_started:

raise Exception(f"Ball never hit net with input x={rim_contact_dist}, {vx}, vy={vy}")

if not demo:

print("\nWarning: simulation timed out")

break

elif z < -3*BALL_RADIUS and not demo:

raise Exception(f"Ball fell through net with input x={rim_contact_dist}, vx={vx}, vy={vy}")

if save:

frames[0].save(save, format='GIF', append_images=frames[1:], save_all=True,

duration=len(frames)/self.step_rate, loop=0)

return np.array(ball_coords) # (step_count, 3)

@cache

def get_output_state(self, *input_state, **kwargs) -> tuple[float, float, float]:

"""Returns the output state (rim_dist, vx_out, vy_out) of the ball given the ball coordinates"""

ball_coords = self.run(*input_state, **kwargs)

rim_dist = NET_RADIUS - ball_coords[-1, 0]

v_vec = p.getBaseVelocity(self.ball)[0]

vx_out, vy_out = v_vec[0], -v_vec[2]

return rim_dist, vx_out, vy_out

Figure C.2: Shot Optimization

import numpy as np

from scipy.optimize import differential_evolution, LinearConstraint, NonlinearConstraint

30

from tqdm import tqdm

import sys

from bullet import GRAVITY, BALL_RADIUS, NET_RADIUS, SpikeBallSimulator

def compute_angle(vx_out, vy_out):

rad = np.arctan2(-vy_out, -vx_out)

if rad < 0:

rad += 2*np.pi

return np.rad2deg(rad)

def get_air_time(vy_out, g=GRAVITY):

return -vy_out/g

def rebound_dist_from_rim(rim_dist, vx, vy, g=GRAVITY, raise_on_invalid=True):

Measured from closest point on rim, positive is away

if vy >= 0:

if raise_on_invalid:

raise ValueError("vy must be negative (upward))")

else:

return -np.inf

if vx >= 0:

if raise_on_invalid:

raise ValueError("vx must be negative (rightward)")

else:

return -np.inf

x = - 2*NET_RADIUS + rim_dist

t = get_air_time(vy, g)

return x - vx*t - 2*NET_RADIUS

def optimize_pocket_shot(sim: SpikeBallSimulator, max_v=22.81563379224826, popsize=15, maxiter=2,

opt_func='max_xdist'):

Find the optimal pocket shot, i.e. the shot rebounds at the shallowest angle possible while still

clearing the net

pbar = tqdm(total=(maxiter + 1) * popsize * 214)

def max_xdist(rim_dist, vx_out, vy_out):

return vx_out # Want it to bounce as fast as possible in the negative x direction

def min_angle(rim_dist, vx_out, vy_out):

return compute_angle(vx_out, vy_out)

def min_air_time(rim_dist, vx_out, vy_out):

air_time = get_air_time(vy_out)

if air_time < 0: # TODO: Necessary?

return np.inf

return air_time

func_map = {

'max_xdist': max_xdist,

'min_angle': min_angle,

'min_air_time': min_air_time,

}

def objective(x):

rim_dist, vx, vy = x

xdist_out, vx_out, vy_out = sim.get_output_state(rim_dist, vx, vy)

obj = func_map[opt_func](xdist_out, vx_out, vy_out)

pbar.update()

pbar.set_description(f"x={rim_dist:.5f}, vx={vx:.5f}, vy={vy:.5f} -> vx_out={vx_out:.3f},

vy_out={vy_out:.3f} (obj={obj:.3f})")

31

return obj

rebound_constr = NonlinearConstraint(lambda x: sim.get_output_state(*x)[1], -np.inf, 0)

min_outbound_constr = NonlinearConstraint(lambda x: np.linalg.norm(sim.get_output_state(*x)[1:]), 0,

np.inf)

rim_dist_bounds = [2*BALL_RADIUS, 2*NET_RADIUS - 2*BALL_RADIUS]

vx_bounds = [0, max_v]

vy_bounds = [0, max_v]

vin_constr = LinearConstraint([0, 1/np.sqrt(2), 1/np.sqrt(2)], [0], [max_v], keep_feasible=True)

constraints = [vin_constr]

if opt_func == 'min_air_time':

clear_rim_constr = NonlinearConstraint(lambda x: rebound_dist_from_rim(*sim.get_output_state(*x),

raise_on_invalid=False), 0, np.inf)

constraints.append(clear_rim_constr)

res = differential_evolution(

objective,

bounds=[rim_dist_bounds, vx_bounds, vy_bounds],

constraints=constraints,

maxiter=maxiter,

popsize=popsize,

)

pbar.close()

print(res)

return res.x

32

