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1 Introduction

1.1 Background
A baseball pitching robot is used for athlete training. The robot can move in the X and Y
directions, and is capable of throwing any type of pitch at any location in the strike zone. See
Figure 1.

Figure 1: Pitching Robot [1], [2]

1.2 Project Objective
The project objective is to design and build a system to localize the baseball pitching robot in
the horizontal plane with relation to home plate using a stereovision camera. This allows the
robot to aim the pitches into the strike-zone with increased accuracy. See Figure 2.

Figure 2: Environment Diagram

1.3 Needs Statement
To increase pitch accuracy and improve athlete training, there is a need to develop a precise
localization system for the baseball pitching robot. Currently, the system lacks precise
localization with respect to home plate, leading to a trial and error setup process for the robot.

1.4 System Requirements
The system must use stereovision to provide offline measurements of Z and X distance along
with angle θ, interface seamlessly with a PC, and measure with a range of up to 20 meters.
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1.5 System Component Options
The system will have a stereovision camera, a target to measure to, and custom written
software to take the measurements. The options for each can be seen in Table 1 below.

Table 1: Design Options

Component Stereovision
Camera

Target Software

Options Basler Home Plate OpenCV in Python

Intel RealSense Aruco Marker ROS

ZED 2i Reflective Markers MATLAB

1.6 Chosen Options
The ZED 2i from Stereolabs was selected for its long range capabilities and simple hardware
and software interfacing. The specifications include a range of up to 35 meters, USB C
connectivity, and interfacing capabilities with Python and OpenCV. The Basler and Intel
stereovision cameras have too short a range to use for this application. The target will use an
Aruco marker for its visibility and easy identification capabilities. Home plate on its own is too
hard to identify precisely and reflective markers are not visible enough at long distances. For
the software interfacing, Stereolabs has an SDK to interface with the ZED 2i, and allows
further interfacing using third party applications such as Python and OpenCV. See Figure 3.

Figure 3: ZED 2i Camera [3]

2



2 System Design

2.1 System Overview
The main components are the ZED 2i Stereovision camera and a localization target. Additional
items include a baseball home plate to place the target on, a tripod for mounting the camera to
mimic the pitching robot, and a laptop to run the stereo vision camera. The camera is placed at
15.7 m from the target, which is the distance the robot will be from home plate. See Figure 4.

Figure 4: System Overview

2.2 Camera Parameters
The ZED 2i Stereovision camera is configured with specific parameters to optimize its
performance for this application:

● Frame Rate: The camera is set to a frame rate of 15 frames per second. This relatively
low frame rate improves the camera’s performance in low light conditions, which is
crucial for capturing clear images regardless of the lighting conditions in the training
environment.

● Resolution: The camera’s resolution is set to its maximum of 2K. This high resolution
ensures that the camera captures the maximum amount of information in each image,
which is vital for accurate depth perception and localization.

● Distance Range: The camera is configured to focus on a specific range of distances,
from a minimum of 13.7m to a maximum of 16.7m. This range corresponds to the
expected distance between the robot and the home plate during operation. By focusing
on this specific range, the camera can optimize its depth perception and reduce errors
in the Z measurements.

● Target Surface: The Aruco surface of the localization target is not “textureless”
compared to a single coloured wall. This design choice reduces temporal instability,
which can cause fluctuations in the camera’s depth measurements over time. The
textured surface of the target provides a consistent visual feature for the camera to lock
onto, improving the stability and accuracy of the localization. [3]
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2.3 Localization Target
The target is made from one square foot of 16 gauge cold rolled steel sheet metal. A locking
hinge is used for the target to fold up for easy carrying and storage. The pattern is waterjet cut,
the legs are bent and the hinge is riveted to the parts. The pop out from the handle is bent and
riveted to the back of the legs to connect them. An 8”x8” Aruco marker is printed and taped to
the front of the target. The target legs align to the back of home plate so it is square and an
accurate point of reference. The sheet metal is $5 per square foot and the hinge is $5, bringing
the total cost of the target to a very affordable $10.
See Figure 5.

Figure 5: Localization Target

2.4 Localization Code
Stereovision uses a pair of cameras to capture multiple viewpoints of a scene, enabling the
computation of depth information through triangulation. See Figure 6.

Figure 6: Stereovision Calculation Diagram [4]
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The left camera is the reference frame and the back of home plate is the desired point to
measure to. The localization code is written in Python using OpenCV. The code automatically
detects the Aruco marker on the target, then measures the depth distances to the center and
right middle edge of the target to get the Z1 and Z2 measurements. Then uses the point cloud
function call to get the lateral X distances to the center and middle edge. After making these
required measurements, the code does the math indicated in Figure 7 to calculate the Z, X,
and Yaw values. The code can be found in Appendix A.

Figure 7: Measurement Diagram
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3 Results

3.1 Data Collection
The ZED 2i camera was set up on the tripod, aligned with the center of the target, and pointed
at the target, which was placed 51.5 ft away. Using a laser measurement tool, validation
measurements were taken of the ground truth Z and X distances. For yaw, a compass was
used to measure the relative angle between the camera and target. From here, 20
measurements were taken. See Appendix B for the data.

3.2 Analysis of Results
While there is no specific accuracy constraint for this project, the goal was to be as accurate as
possible. Based on the expectations of this system, an acceptable limit is to have Z and X
within 3” and the yaw within 5°. The results can be seen in Table 2.

Table 2: Results

Z Error [in] X Error [in] Yaw Error [°]

Average 17.89” 2.26” 26.24

Median 18.67” 2.03” 18.44

The results reveal some interesting insights into the performance of the system. The X error is
within an acceptable limit, which indicates that the system is able to accurately determine the
lateral position of the robot relative to the home plate. This is very important, as it allows the
robot to accurately aim its pitches across the width of the strike zone. However, the Z and Yaw
errors are quite large, which shows that the system struggles to accurately determine the
depth and orientation of the robot. This is a critical issue, as it affects the robot’s ability to
accurately hit the strike zone and to adjust the pitches depending on its orientation to the home
plate.

The poor accuracy of the Z measurement is due to the limitations of the stereovision camera.
The ZED 2i camera, while boasting a range of up to 35 meters, has its limitations when it
comes to depth perception. This is large in part due to the distance between the cameras (the
baseline) and the focal length of the lenses.

The Yaw error, on the other hand, is a result of the inaccurate Z measurements. Since Yaw is
calculated using Z1 and Z2 measurements, any error in these measurements will directly affect
the accuracy of the Yaw calculation. This highlights the importance of accurate depth
perception in determining the orientation of the robot.
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4 Future Work and Conclusion

4.1 Future Work

4.1.1 Localization Accuracy
To increase the accuracy of the depth measurements, designing a custom stereovision setup
using two identical cameras is the best way forward. The cameras can be set up with a much
larger baseline and long focal length lenses will increase the accuracy of the depth
measurements, as per the equation in Figure 8 from [5]. Appropriate baseline and focal length
values can be chosen based on the desired maximum error.

Figure 8: Depth Error Formula

4.1.2 Localization Target
For a future target, it should have larger dimensions of at least 12”x12”, and a checkerboard
instead of an Aruco marker should be painted onto the target instead of printed paper. Using
paint provides a more professional target with improved contrast, increased flatness, and
reduced glare with the matte finish. A custom stereovision camera setup requires calibration,
and the checkerboard can be used for both calibration and localization. The larger target
allows for a larger checkerboard which is easier for the camera to identify for localization and
improves the calibration performance.

4.2 Conclusion
In conclusion, this project has made significant strides towards achieving its goal of localizing a
baseball pitching robot relative to home plate. Despite the challenges encountered, the system
was able to measure the Z, X, and Yaw of the pitching robot with reasonable accuracy.
However, the results also highlight the limitations of the current system and provide valuable
insights into areas for future improvement.

Overall, while there is still work to be done, the project represents a significant step forward in
the quest for a precise localization system for a baseball pitching robot. This project lays the
groundwork and provides a clear way forward to improve the performance of the system.
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Appendix A
import pyzed.sl as sl

import math

import numpy as np

import sys

import cv2

import cv2.aruco as aruco

import fractions

import csv

import os

import datetime

MILLIMETERS_TO_INCHES = 0.0393701

FRACTIONAL_PRECISION = 16

ZED2_BASELINE = 120 # mm

MARKER_WIDTH = 300 # mm

k = 293 # mm

PRINT_DATA = False

WRITE_TO_CSV = True

SHOW_IMAGE = True

PROCESS_IMAGE = True

SET_MIN_DIST = False

# Define the checkerboard dimensions

CHECKERBOARD_SIZE = (3, 3)

def getMousePos(image):

def onMouse(event, x, y, flags, param):

if event == cv2.EVENT_LBUTTONDOWN:

param['x'] = x

param['y'] = y

param['event'] = event

y_start = 600

y_end = 800

x_start = 1000

x_end = 1200
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param = {'x': -1, 'y': -1, 'event': -1}

cv2.namedWindow("Image")

cv2.setMouseCallback("Image", onMouse, param)

cv2.imshow("Image", image[y_start:y_end, x_start:x_end])

while param['event'] != cv2.EVENT_LBUTTONDOWN:

cv2.waitKey(10)

cv2.destroyWindow("Image")

print(f"Chosen point: {{{param['x'] + x_start};{param['y'] + y_start}}}")

return param['x'] + x_start, param['y'] + y_start

def mm_to_feet_inches_fractions(mm):

# Convert mm to inches

inches = mm * MILLIMETERS_TO_INCHES

# Calculate feet and remaining inches

feet = int(inches // 12)

remaining_inches = inches % 12

# Convert remaining inches to fractions

remaining_distance = remaining_inches - int(remaining_inches)

numerator = round((remaining_distance * FRACTIONAL_PRECISION))

denominator = FRACTIONAL_PRECISION

fraction = fractions.Fraction(numerator, denominator)

# Format the result

result = f"{feet}' {int(remaining_inches)}\" {fraction}"

return result

def get_camera_matrix_and_distortion(camera):

# Get the camera matrix and distortion coefficients from the ZED camera

camera_info = camera.get_camera_information()

# Get the camera matrix and distortion coefficients from the ZED camera

cam_fx =

camera_info.camera_configuration.calibration_parameters.left_cam.fx

cam_fy =

camera_info.camera_configuration.calibration_parameters.left_cam.fy

cam_cx =

camera_info.camera_configuration.calibration_parameters.left_cam.cx
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cam_cy =

camera_info.camera_configuration.calibration_parameters.left_cam.cy

cameraMatrix = np.array([[cam_fx, 0, cam_cx],

[0, cam_fy, cam_cy],

[0, 0, 1]])

# Get the distortion coefficients

distCoeffs =

camera_info.camera_configuration.calibration_parameters.left_cam.disto

# # Convert to numpy array, come back to check this array, it apprears to

cut off the last digit, expected values are [0.01, 0.1, 0.1, 0.1, 0.1]ish

# distCoeffs =

np.array(camera_info.camera_configuration.calibration_parameters.left_cam.disto

)

# print the camera matrix and distortion coefficients

if(PRINT_DATA):

print(f"Camera Matrix: {cameraMatrix}")

print(f"Distortion Coefficients: {distCoeffs}")

return cameraMatrix, distCoeffs

def find_aruco_marker(image, aruco_dict, parameters, cameraMatrix, distCoeffs):

# Crop the image to the region of interest

y_start = 625

y_end = 725

x_start = 1025

x_end = 1125

# Crop the image and convert it to grayscale

gray = cv2.cvtColor(image[y_start:y_end, x_start:x_end],

cv2.COLOR_BGR2GRAY)

processed_image = gray

cv2.imshow("Processed Image", processed_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

# Detect the aruco markers in the cropped image, this also applies adaptive

thresholding

corners, ids, rejected = aruco.detectMarkers(processed_image, aruco_dict,

parameters=parameters)
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# If any markers are detected

if ids is not None:

# Get the center coordinates of the first detected marker

marker_center = np.mean(corners[0][0], axis=0)

marker_right_middle = np.mean(corners[0][0][1:3], axis=0)

print(f"Center of the aruco marker: {marker_center}")

print(f"Right Middle of the aruco marker: {marker_right_middle}")

x = int(marker_center[0]) + x_start # add on the x_start to get the

coordinates in the uncropped image

y = int(marker_center[1]) + y_start # add on the y_start to get the

coordinates in the uncropped image

x_right_middle = int(marker_right_middle[0]) + x_start # add on the

x_start to get the coordinates in the uncropped image

if PRINT_DATA: print(f"Center of the aruco marker: {{{x};{y}}}")

# Draw a rectangle around the detected marker in the image

cv2.rectangle(image, (x-10, y-10), (x+10, y+10), (0, 255, 0), 2)

# Display the image with the detected marker

cv2.imshow("Raw Image with Detected Center", image[y-200:y+200,

x-200:x+200])

cv2.waitKey(0)

cv2.destroyAllWindows()

# return the coordinates of the center of the aruco marker for depth

sensing, and yaw angle

return x, y, x_right_middle

else:

print("---------NO ARUCO MARKER DETECTED---------")

return None

def get_z_depth(depth, x, y):

# Get the depth value at the detected point

err, z = depth.get_value(x, y)

return z

def get_x_distance(point_cloud, x, y):

err, point_cloud_value = point_cloud.get_value(x, y)
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# get the lateral distance to the target using the point cloud value of the

center of the target

if err == sl.ERROR_CODE.SUCCESS:

x_distance = point_cloud_value[0]

return round(x_distance, 2)

return None

def get_yaw(z1, z2):

x0 = MARKER_WIDTH / 2

# print(f"X0: {x0}")

# print(f"Z1: {z1}")

# print(f"Z2: {z2}")

# print(f"Z2-Z1: {z2-z1}")

# print(f"Z2-Z1/x0: {(z2-z1)/x0}")

yaw = math.asin( (z2-z1) / x0)

yaw_degrees = np.round(math.degrees(yaw),2)

return yaw_degrees

def write_to_csv(data):

# Write the data to a CSV file

if WRITE_TO_CSV:

if not os.path.isfile('output.csv'):

with open('output.csv', mode='a') as output_file:

output_writer = csv.writer(output_file, delimiter=',',

quotechar='"', quoting=csv.QUOTE_MINIMAL)

output_writer.writerow(['Z [IMP]', 'Z [mm]', 'X [IMP]', 'X

[mm]', 'Yaw [deg]'])

with open('output.csv', mode='a') as output_file:

output_writer = csv.writer(output_file, delimiter=',',

quotechar='"', quoting=csv.QUOTE_MINIMAL)

output_writer.writerow(data)

def main():

# Create the aruco dictionary, this is for the specfic aruco marker we are

using

aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_7X7_250)

parameters = aruco.DetectorParameters()

# Create a Camera object

zed = sl.Camera()
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# Create a InitParameters object and set configuration parameters

init_params = sl.InitParameters()

init_params.depth_mode = sl.DEPTH_MODE.ULTRA # Use ULTRA depth mode

init_params.camera_resolution = sl.RESOLUTION.HD2K # Use HD2K video mode

(4416x1242) @ 15fps

# init_params.camera_resolution = sl.RESOLUTION.HD1080 # Use HD1080 video

mode (1920x1080) @ 15fps

init_params.camera_fps = 15 # Set the camera to 15fps, I think this is

redundant as 15fps is max for HD2K

init_params.coordinate_units = sl.UNIT.MILLIMETER # Use meter units (for

depth measurements)

init_params.depth_maximum_distance = 16764 # Set the maximum depth

perception distance to 55 ft

init_params.depth_minimum_distance = 13716 # Set the minimum depth

perception distance to 45 ft

# Set the positional tracking parameters

track_params = sl.PositionalTrackingParameters()

track_params.set_as_static = True # Set the camera to static mode

# PositionalTrackingParameters::set_as_static

# Create a matrix to store image, depth, point cloud

image = sl.Mat()

depth = sl.Mat()

point_cloud = sl.Mat()

# Create a reference to the mirror (IDK WHAT THIS MEANS)

mirror_ref = sl.Transform()

mirror_ref.set_translation(sl.Translation(2.75,4.0,0))

# Open the camera

status = zed.open(init_params)

if status != sl.ERROR_CODE.SUCCESS: #Ensure the camera has opened

succesfully

print("Camera Open : "+repr(status)+". Exit program.")

exit()

# Get the camera matrix and distortion coefficients

cameraMatrix, distCoeffs = get_camera_matrix_and_distortion(zed)

# Create and set RuntimeParameters after opening the camera

runtime_parameters = sl.RuntimeParameters()

# A new image is available if grab() returns SUCCESS
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if zed.grab(runtime_parameters) == sl.ERROR_CODE.SUCCESS:

# Retrieve left image

zed.retrieve_image(image, sl.VIEW.LEFT)

# Retrieve depth map. Depth is aligned on the left image

zed.retrieve_measure(depth, sl.MEASURE.DEPTH)

# Retrieve colored point cloud. Point cloud is aligned on the left

image.

zed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA)

# define the image data for future use

image_data = image.get_data()

# detect center of the aruco marker

center_x, center_y, center_x_right = find_aruco_marker(image_data,

aruco_dict, parameters, cameraMatrix, distCoeffs)

print(f"----------------DEPTH------------------------")

z1 = get_z_depth(depth, center_x, center_y)

z2 = get_z_depth(depth, center_x_right, center_y)

z1_inches = mm_to_feet_inches_fractions(z1)

z2_inches = mm_to_feet_inches_fractions(z2)

print(f"Z Depth to Target: {z1_inches}, {round(z1, 2)} mm")

print(f"Z Depth to Target Right: {z2_inches}, {round(z2, 2)} mm")

print(f"----------------X Distance------------------------")

x1 = get_x_distance(point_cloud, center_x, center_y)

x2 = get_x_distance(point_cloud, center_x_right, center_y)

x1_inches = mm_to_feet_inches_fractions(x1)

x2_inches = mm_to_feet_inches_fractions(x2)

print(f"X Distance to Target: {x1_inches}, {round(x1, 2)} mm")

print(f"X Distance to Target Right: {x2_inches}, {round(x2, 2)} mm")

print(f"----------------YAW------------------------")

yaw = get_yaw(z1, z2)

print(f"Yaw: {yaw}°")

print(f"----------------Final Values------------------------")

z3 = k * math.cos(math.radians(yaw))

x3 = k * math.sin(math.radians(yaw))

Z = np.round(z1 + z3, 2)

X = np.round(x1 - x3, 2)

print(f"Z: {Z} mm, {mm_to_feet_inches_fractions(Z)}")

print(f"X: {X} mm, {mm_to_feet_inches_fractions(X)}")

print(f"Yaw: {yaw}°")
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print(f"----------------END------------------------")

data = [Z, X, yaw]

write_to_csv(data)

# Close the camera

zed.close()

if __name__ == "__main__":

main()
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Appendix B
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