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1 Introduction

1.1 Background

A baseball pitching robot is used for athlete training. The robot can move in the X and Y
directions, and is capable of throwing any type of pitch at any location in the strike zone. See
Figure 1.
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Figure 1: Pitching Robot [1], [2]

1.2 Project Objective

The project objective is to design and build a system to localize the baseball pitching robot in
the horizontal plane with relation to home plate using a stereovision camera. This allows the
robot to aim the pitches into the strike-zone with increased accuracy. See Figure 2.
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Figure 2: Environment Diagram

1.3 Needs Statement

To increase pitch accuracy and improve athlete training, there is a need to develop a precise
localization system for the baseball pitching robot. Currently, the system lacks precise
localization with respect to home plate, leading to a trial and error setup process for the robot.

1.4 System Requirements

The system must use stereovision to provide offline measurements of Z and X distance along
with angle 6, interface seamlessly with a PC, and measure with a range of up to 20 meters.



1.5 System Component Options

The system will have a stereovision camera, a target to measure to, and custom written
software to take the measurements. The options for each can be seen in Table 1 below.

Table 1: Design Options

Component Stereovision Target Software
Camera

Options Basler Home Plate OpenCV in Python
Intel RealSense Aruco Marker ROS
ZED 2i Reflective Markers MATLAB

1.6 Chosen Options

The ZED 2i from Stereolabs was selected for its long range capabilities and simple hardware
and software interfacing. The specifications include a range of up to 35 meters, USB C
connectivity, and interfacing capabilities with Python and OpenCV. The Basler and Intel
stereovision cameras have too short a range to use for this application. The target will use an
Aruco marker for its visibility and easy identification capabilities. Home plate on its own is too
hard to identify precisely and reflective markers are not visible enough at long distances. For
the software interfacing, Stereolabs has an SDK to interface with the ZED 2i, and allows
further interfacing using third party applications such as Python and OpenCV. See Figure 3.

Figure 3: ZED 2i Camera [3]




2 System Design

2.1 System Overview

The main components are the ZED 2i Stereovision camera and a localization target. Additional
items include a baseball home plate to place the target on, a tripod for mounting the camera to
mimic the pitching robot, and a laptop to run the stereo vision camera. The camera is placed at
15.7 m from the target, which is the distance the robot will be from home plate. See Figure 4.
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Figure 4: System Overview

2.2 Camera Parameters

The ZED 2i Stereovision camera is configured with specific parameters to optimize its
performance for this application:

e Frame Rate: The camera is set to a frame rate of 15 frames per second. This relatively
low frame rate improves the camera’s performance in low light conditions, which is
crucial for capturing clear images regardless of the lighting conditions in the training
environment.

e Resolution: The camera’s resolution is set to its maximum of 2K. This high resolution
ensures that the camera captures the maximum amount of information in each image,
which is vital for accurate depth perception and localization.

e Distance Range: The camera is configured to focus on a specific range of distances,
from a minimum of 13.7m to a maximum of 16.7m. This range corresponds to the
expected distance between the robot and the home plate during operation. By focusing
on this specific range, the camera can optimize its depth perception and reduce errors
in the Z measurements.

e Target Surface: The Aruco surface of the localization target is not “textureless”
compared to a single coloured wall. This design choice reduces temporal instability,
which can cause fluctuations in the camera’s depth measurements over time. The
textured surface of the target provides a consistent visual feature for the camera to lock
onto, improving the stability and accuracy of the localization. [3]



2.3 Localization Target

The target is made from one square foot of 16 gauge cold rolled steel sheet metal. A locking
hinge is used for the target to fold up for easy carrying and storage. The pattern is waterjet cut,
the legs are bent and the hinge is riveted to the parts. The pop out from the handle is bent and
riveted to the back of the legs to connect them. An 8°x8” Aruco marker is printed and taped to
the front of the target. The target legs align to the back of home plate so it is square and an
accurate point of reference. The sheet metal is $5 per square foot and the hinge is $5, bringing
the total cost of the target to a very affordable $10.

See Figure 5.

Figure 5: Localization Target

2.4 Localization Code

Stereovision uses a pair of cameras to capture multiple viewpoints of a scene, enabling the
computation of depth information through triangulation. See Figure 6.
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Figure 6: Stereovision Calculation Diagram [4]



The left camera is the reference frame and the back of home plate is the desired point to
measure to. The localization code is written in Python using OpenCV. The code automatically
detects the Aruco marker on the target, then measures the depth distances to the center and
right middle edge of the target to get the Z1 and Z2 measurements. Then uses the point cloud
function call to get the lateral X distances to the center and middle edge. After making these
required measurements, the code does the math indicated in Figure 7 to calculate the Z, X,
and Yaw values. The code can be found in Appendix A.
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Stereovision
Measurement Diagram

reference frame: red
target: blue

known lengths: green
measurements: black

B = camera baseline

X0 = target width / 2

K = target to back of plate
YAW = arcsin[ (Z2-21) | X0]

Z1 = focal length*B / disparity1
Z2 = focal length*B [/ disparity2
Z3 = K*cos(yaw)

Z=71+173

X1 = point cloud value

X2 = point cloud value

X3 = K*sin(yaw)
X=X1-X3

Figure 7: Measurement Diagram



3 Results

3.1 Data Collection

The ZED 2i camera was set up on the tripod, aligned with the center of the target, and pointed
at the target, which was placed 51.5 ft away. Using a laser measurement tool, validation
measurements were taken of the ground truth Z and X distances. For yaw, a compass was
used to measure the relative angle between the camera and target. From here, 20
measurements were taken. See Appendix B for the data.

3.2 Analysis of Results

While there is no specific accuracy constraint for this project, the goal was to be as accurate as
possible. Based on the expectations of this system, an acceptable limit is to have Z and X
within 3” and the yaw within 5°. The results can be seen in Table 2.

Table 2: Results

Z Error [in] X Error [in] Yaw Error [°]
Average 17.89” 2.26” 26.24
Median 18.67” 2.03” 18.44

The results reveal some interesting insights into the performance of the system. The X error is
within an acceptable limit, which indicates that the system is able to accurately determine the
lateral position of the robot relative to the home plate. This is very important, as it allows the
robot to accurately aim its pitches across the width of the strike zone. However, the Z and Yaw
errors are quite large, which shows that the system struggles to accurately determine the
depth and orientation of the robot. This is a critical issue, as it affects the robot’s ability to
accurately hit the strike zone and to adjust the pitches depending on its orientation to the home
plate.

The poor accuracy of the Z measurement is due to the limitations of the stereovision camera.
The ZED 2i camera, while boasting a range of up to 35 meters, has its limitations when it
comes to depth perception. This is large in part due to the distance between the cameras (the
baseline) and the focal length of the lenses.

The Yaw error, on the other hand, is a result of the inaccurate Z measurements. Since Yaw is
calculated using Z1 and Z2 measurements, any error in these measurements will directly affect
the accuracy of the Yaw calculation. This highlights the importance of accurate depth
perception in determining the orientation of the robot.




4 Future Work and Conclusion

4.1 Future Work

4.1.1 Localization Accuracy

To increase the accuracy of the depth measurements, designing a custom stereovision setup
using two identical cameras is the best way forward. The cameras can be set up with a much
larger baseline and long focal length lenses will increase the accuracy of the depth
measurements, as per the equation in Figure 8 from [5]. Appropriate baseline and focal length
values can be chosen based on the desired maximum error.

Az:bzf-ngD Where

Az depth error

z  depth of point of interest
b baseline

f focal length

A D disparity error

Figure 8: Depth Error Formula

4.1.2 Localization Target

For a future target, it should have larger dimensions of at least 12"x12”, and a checkerboard
instead of an Aruco marker should be painted onto the target instead of printed paper. Using
paint provides a more professional target with improved contrast, increased flatness, and
reduced glare with the matte finish. A custom stereovision camera setup requires calibration,
and the checkerboard can be used for both calibration and localization. The larger target
allows for a larger checkerboard which is easier for the camera to identify for localization and
improves the calibration performance.

4.2 Conclusion

In conclusion, this project has made significant strides towards achieving its goal of localizing a
baseball pitching robot relative to home plate. Despite the challenges encountered, the system
was able to measure the Z, X, and Yaw of the pitching robot with reasonable accuracy.
However, the results also highlight the limitations of the current system and provide valuable
insights into areas for future improvement.

Overall, while there is still work to be done, the project represents a significant step forward in
the quest for a precise localization system for a baseball pitching robot. This project lays the
groundwork and provides a clear way forward to improve the performance of the system.
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Appendix A

pyzed.sl as sl
math

numpy as np

SYS

cv2

CVZ2.aruco as aruco
fractions

csv

oS

datetime

MILLIMETERS TO INCHES = 0.0393701
FRACTIONAL PRECISION = 16
ZED2 BASELINE = 120
MARKER WIDTH = 300
K
PRINT DATA = False
WRITE TO CSV = True
SHOW_ TIMAGE = True
PROCESS TIMAGE = True
SET_MIN DIST = False

CHECKERBOARD STIZE

def getMousePos (image) :
def onMouse (event, x, y, flags, param):
if event == cv2.EVENT7LBUTTONDOWN:

param['x'] = x

param['y'] = vy
]

param['event'] = event




param = {'x': -1, 'y': -1, 'event': -1}
cv2.namedWindow (" Image")
cv2.setMouseCallback ("Image", onMouse, param)

cv2.imshow ("Image", imagel[y start:y end, x start:x end])

while param['event'] != cv2.EVENT LBUTTONDOWN :
cv2.waitKey (10)

cv2.destroyWindow (" Image")

print (f"Chosen point: {{{param['x'] + x start};{param['y'] + y start}}}")

return param['x'] + x start, param['y'] + y start

- mm_to feet inches fractions (mm):

inches = mm * MILLIMETERS TO INCHES

feet = int (inches // 12)

remaining inches = inches % 12

remaining distance = remaining inches - int (remaining inches)

numerator = round((remaining distance * FRACTIONAL PRECISION) )

denominator = FRACTIONAL PRECISION

fraction = fractions.Fraction (numerator, denominator)

result = f"{feet}' {int(remaining inches) }\" {fraction}"

return result

get camera matrix and distortion (camera) :

camera info = camera.get camera information ()

cam fx =

camera info.camera configuration.calibration parameters.left cam.fx
cam fy =

camera info.camera configuration.calibration parameters.left cam.fy

cam CX =

camera info.camera configuration.calibration parameters.left cam.cx




cam cy =
camera info.camera configuration.calibration parameters.left cam.cy
cameraMatrix = np.array([[cam fx, 0, cam cx],
[0, cam fy, cam cy],
(0, 0, 111)

distCoeffs =

camera info.camera configuration.calibration parameters.left cam.disto

if (PRINTiDATA) :
print (f"Camera Matrix: {cameraMatrix}")

print (f"Distortion Coefficients: {distCoeffs}")

return cameraMatrix, distCoeffs

find aruco marker (image, aruco dict, parameters, cameraMatrix, distCoeffs):

y_start = 625
y end = 725
x start = 1025
x end = 1125

gray = cv2.cvtColor (image[y start:y end, x start:x end],
.COLOR_BGR2GRAY)

processed image = gray

cv2.imshow ("Processed Image", processed image)
cv2.waitKey (0)

cv2.destroyAllWindows ()

corners, ids, rejected = aruco.detectMarkers (processed image, aruco dict,

parameters=parameters)




ids 1s not None:

marker center = np.mean (corners[0] [0], axis=0)
marker right middle = np.mean (corners[0] [0] [1:3], axis=0)

print (f"Center of the aruco marker: {marker center}")

print (£f"Right Middle of the aruco marker: {marker right middle}")

x = 1int (marker center[0]) + x start

y = int (marker center[l]) + y start

x right middle = int (marker right middle[0]) + x start

if PRINT DATA: print (f"Center of the aruco marker: {{{x};{y}}}")

cv2.rectangle (image, (x-10, y-10), (x+10, y+10), (0, 255, 0), 2)

cv2.imshow ("Raw Image with Detected Center", imagel[y-200:y+200,
x-200:x+20017)

cv2.waitKey (0)

cv2.destroyAllWindows ()

return x, y, x right middle

else:

return None

get z depth (depth, x, y):

err, z = depth.get value(x, Vy)

return z

get x distance (point cloud, x, y):

err, point cloud value = point cloud.get value(x, y)




if err == sl.ERROR CODE.SUCCESS:
x distance = point cloud value[O0]

return round(x distance, 2)

return None

get yaw(zl, z2):
x0 = MARKERfWIDTH / 2

yaw = math.asin( (z2-z1l) / x0)
yaw_degrees = np.round(math.degrees (yaw), 2)

return yaw degrees
write to csv(data):

if WRITE TO CSV:
if not os.path.isfile('output.csv'):
with open ('output.csv', mode='a') as output file:
output writer = csv.writer (output file, delimiter=',",
quotechar='"""', quoting=csv.QUOTE MINIMAL)
output writer.writerow(['Z [IMP]', 'Z [mm]', 'X [IMP]', 'X
[mm] ', 'Yaw [deg]'])
with open ('output.csv', mode='a') as output file:
output writer = csv.writer (output file, delimiter=',"',
quotechar="'""', quoting=csv.QUOTE MINIMAL)

output writer.writerow (data)

aruco_dict = aruco.getPredefinedDictionary(aruco.DICT 7X7 250)

parameters = aruco.DetectorParameters ()

zed = sl.Camera ()




init params = sl.InitParameters ()
init params.depth mode = s1.DEPTH MODE.ULTRA
init params.camera resolution = s1.RESOLUTION.HDZK

init params.camera fps = 15

init params.coordinate units = s1.UNIT.MILLIMETER

init params.depth maximum distance = 16764

init params.depth minimum distance = 13716

track params = sl.PositionalTrackingParameters ()

track params.set as static = True

image sl.Mat ()
depth = sl.Mat ()
point cloud = sl.Mat ()

mirror ref = sl.Transform()

mirror ref.set translation(sl.Translation(2.75,4.0,0))

status = zed.open (init params)
if status != s1.ERROR CODE.SUCCESS:
print ("Camera Open : "+repr(status)+". Exit program.")

exit ()

cameraMatrix, distCoeffs = get camera matrix and distortion (zed)

runtime parameters = sl.RuntimeParameters ()




if zed.grab(runtime parameters) == s1.ERROR CODE.SUCCESS:

zed.retrieve image (image, sl1.VIEW.LEFT)

zed.retrieve measure (depth, sl.MEASURE.DEPTH)

zed.retrieve measure (point cloud, sl.MEASURE.XYZRGBA)

image data = image.get data()

center x, center y, center x right = find aruco marker (image data,

aruco_dict, parameters, cameraMatrix, distCoeffs)

print (

zl = get z depth (depth, center x, center y)

z2 = get z depth(depth, center x right, center y)

zl inches = mm to feet inches fractions(zl)

z2 inches = mm to feet inches fractions(z2)

print (f"Z Depth to Target: {zl inches}, {round(zl, 2)} mm")
print (£"Z Depth to Target Right: {z2 inches}, {round(z2,
print (

x1l = get x distance(point cloud, center x, center y)

x2 = get x distance(point cloud, center x right, center y)

x1 inches = mm to feet inches fractions (x1)

x2 inches = mm to feet inches fractions (x2)

print (£"X Distance to Target: {xl1 inches}, {round(xl, 2)} mm")
print (£"X Distance to Target Right: {x2 inches}, {round(x2, 2)} mm")
print (

yaw = get yaw(zl, z2)

print (f"Yaw: {yaw}°")

* math.cos (math.radians (yaw))
* math.sin(math.radians (yaw))
.round(z1l + z3, 2)
.round (x1 - x3, 2)

print (£"Z: {Z} mm, {mm to feet inches fractions(Z)}")

print (£"X: {X} mm, {mm to feet inches fractions(X)}")

print (f"Yaw: {yaw}°")




print (£"

data =

write to

zed.close ()

16



Appendix B

Z [mm] X [mm] Yaw [deg] Z diff [mm] X diff [mm] Yaw diff [deg] Z Val [mm] X Val [mm] Yaw Val [deg]

16162.42 -272.6 17.09 46523 -42.41 37.09 15697 19 -230.19 -20

16136.24 -184.71 -0.26 439.05 4548 19.74

16225.03 66.44 -60.6 527.84 29663 -406

16092.45 -300.24 2299 395.26 -70.05 4299 avg Z diff med Z diff stdev Z diff

16214.46 -172.7 -2.7% 517.27 57.49 17.21 454.52 474.32 52.86 [mm]

16222.29 -176.91 -1.97 525.10 53.28 18.03 17.89 18.67 [in]
162369 -88.69 -19.68 539.71 141.50 032

1622426 -104.24 -16.45 527.07 125.95 3.55 avg X diff med X diff stdev X diff

16089.99 -340.71 3187 39280 -110.52 51.87 110.52 51.53 136.51 [mm]

16085.33 -329.14 29.27 388.14 -98.95 4927 435 2.03 [in]
16067.6 -352.46 3467 370.41 -122.27 5467

16160.13 -316.63 26.33 462.94 -86.44 46.33 avg Yaw diff med Yaw diff  stdev Yaw diff

16012.79 -418.16 5243 315.60 -187.97 7243 26.24 18.44 31.09

16204.15 -105.18 -16.21 506.96 125.01 379

16171.51 -89.54 -19.34 47432 140.65 0.66

15543.82 -466.2 72.9 246.63 -236.01 929

16206.38 -102.91 -16.68 509.19 127.28 332

16239.34 -118.99 -13.49 542.15 111.20 6.51

16187.47 -178.66 -1.56 490.28 51.53 18.44



